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Abstract

Assessment of the heat either delivered from high temperature rocks to the borehole or transmitted to the rock

formation from circulating fluid is of crucial importance for a number of technological processes related to borehole

drilling and exploitation. Normally the temperature fields in the well and surrounding rocks are calculated numerically

by finite difference method or analytically by applying the Laplace-transform method. The former approach requires

tedious and, in certain cases, non-trivial numerical computations. The latter method leads to rather bulky formulae that

are inconvenient for further numerical evaluation. Moreover, in previous studies where the solution is obtained ana-

lytically, the heat interaction of the circulating fluid with the formation was treated on the condition of constant bore-

face temperature. In the present study the temperature field in the rock formation disturbed by the heat flow from the

borehole is modeled by a heat conduction equation, assuming the Newton model for the convective heat transfer on the

bore-face, with boundary conditions that account for the thermal history of the borehole exploitation. The problem is

solved analytically by the generalized heat balance integral method. Within this method the approximate solution of the

heat conduction problem is sought in the form of a finite sum of functions that belong to a complete set of linearly

independent functions defined at the finite interval bounded by the radius of thermal influence and that satisfy the

homogeneous boundary conditions on the bore-face. In the present study first and second order approximations are

obtained for the composite multi-layer domain. The numerical results illustrate that the second approximation is in a

good agreement with the exact solution. The only disadvantage of this solution is that it depends on the radius of

thermal influence, which is an implicit function of time and can only be found numerically by iterative algorithms. In

order to eliminate this complication, in this study an approximate explicit formula for the radius of thermal influence

and new close-form approximate solution are proposed on the basis of the approximate solution obtained by the in-

tegral-balance method. Employing the non-liner regression method the coefficients for this simplified solution are

obtained. The accuracy of the approximate solution is validated by comparison with the exact analytical solution found

by Carslaw and Jaeger for the homogeneous domain.
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1. Introduction

The heat transfer process plays an important role in

a number of industrial applications related to drilling
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technologies and borehole exploitation. For instance, in

geothermal power plants the heat losses from the walls

of injection and production wells is an important factor

that affects the productivity of the geothermal system

[1]. Interpretation of electric logs and estimation of the

formation temperatures from well logs also require the

knowledge of the temperature disturbances in the for-

mation produced by circulating fluid during drilling or

production. Assessment of the heat either delivered
ed.
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Nomenclature

A parameter defined by Eq. (46)

ak functions in the approximate solution (8)

Bi Biot number defined by Eqs. (6)

D non-dimensional thermal diffusivities de-

fined by Eqs. (7)

Di non-dimensional thermal diffusivities, di=dm
di dimensional thermal diffusivity for the ith

layer in the domain ði ¼ 1; 2; . . . ;mÞ
d1 dimensional thermal diffusivity of the rock

formation, dm
fkðrÞ functions in the approximate solution (8)

f 0
kðlÞ derivative dfkðrÞ=dr at r ¼ l
H depth of the borehole

hw heat transfer coefficient on the bore-face

J0, J1 Bessel functions of the first kind of the order

0 and 1, respectively

q�w dimensional heat flux on the bore-face de-

fined by Eq. (50), which correspond to T �

~qq, qw scaled heat fluxes on the bore-face which

correspond to eTT and T , respectively
K thermal conductivities defined by Eq. (7)

Ki non-dimensional thermal conductivities, ki=k1
ki dimensional thermal conductivity at the ith

layer of the multi-layer domain ði ¼
1; 2; . . . ;mÞ

km, k1 thermal conductivities of the formation and

wall of the casing tube, respectively

L thickness of casing

lðsÞ radius of thermal influence

Mk functions defined by Eq. (17)

rw radius of the borehole

r, z non-dimensional cylindrical coordinates,

r�=rw, z�=H
ri non-dimensional bounds of the layers in the

domain around the borehole, r�i =rw
T temperature difference, T � � T0ðr�; z�; s� þ s0Þ
T � temperature of the media around the bore-

hole

T0 initial temperature of the rock, T0ðr�; z�; s�Þ
which accounts for the thermal history of

the formation until time s� ¼ s0
T �
L mean temperature of the circulating fluid

within the borehole, T �
L ðz�; s�Þ

TL temperature defined by Eqs. (6)eTT solution of the problem (1)–(5) for TL ¼ 1

Y0, Y1 Bessel functions of the second kind of the

order 0 and 1, respectively

mk function defined by Eq. (14)

s non-dimensional time

s0 time at the onset of a new circulation cycle

Superscript
� dimensional variable
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from high temperature rocks to the drilling bit or

transmitted to the rock formation from the circulating

fluid is of crucial importance for developing new

drilling technologies and for optimal design of the in-

struments used in deep drilling at high formation

temperature [2]. Normally the temperature fields in the

well and surrounding rocks are calculated numerically

[3–8] with a finite difference method. The exact ana-

lytical solutions of Shen and Beck [9] and Lee [10]

obtained by Laplace transformation are rather bulky

and require tedious non-trivial numerical evaluations.

Therefore, they are not very convenient for engineering

estimation. In a number of previous publications the

heat interaction of the circulating fluid with the for-

mation was treated under the condition of constant

bore-face temperature [11–17]. On the basis of the

latter approach, employing some additional simplifying

assumptions, several simple analytical formulae for the

temperature in the rock formation and for the heat flux

on the bore-face were proposed [14–18]. However, the

assumption of constant bore-face temperature is not

realistic and, therefore, the temperature on the bore-
face should be treated as an unknown function of time

and axial coordinate z in mathematical modeling. For

this reason, the previously obtained solutions have a

limited range of practical applicability and can be used

only in the case of highly intensive heat transfer be-

tween the circulating fluid and surrounding media. In

the present study Newton�s model of convective heat

transfer on the bore-face is employed. Carslaw and

Jaeger [19] found an exact analytical solution of this

problem for the particular case of a homogeneous

domain, but their solution is rather bulky even for this

simple case. The integral-balance approximate method

[20,21], applied in the present study, leads to simpler

analytical formulae convenient for engineering calcu-

lations. It allows solving the heat conduction problem

in a composite domain formed with an arbitrary finite

number of co-axial cylindrical layers with different

thermophysical properties. The existence of the multi-

layer composite media around the borehole with dif-

ferent thermophysical properties at each layer occurs

due to completion technology that requires, for in-

stance, casing and cementing [6,17].
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2. System model and analysis

A schematic sketch of the completed borehole with

multi-layer casing is illustrated in Fig. 1. As an example,

a 2-layer casing of total thickness L is presented. The

axial symmetry of the process is assumed and, therefore,

the cylindrical coordinates ðr�; z�Þ are employed. In

order to focus on the heat conduction problem in the

formation and separate this problem from the heat and

mass transfer processes in the borehole, the mean fluid

temperature in the borehole, T �
L ðz�; s�Þ, is assumed to be

given. The heat flux on the bore-face, r� ¼ rw, is assumed

to be proportional to the temperature difference between

the bore-face and the fluid in the well, �k1oT �=or� ¼
hwðT �

L � T �Þ. Obviously, the undisturbed formation

temperature Tf ðz�Þ can be chosen as an initial condition

and as the ambient temperature for the mathematical

model of the temperature field around the well. However

in many applications the circulating regime is not con-

tinuous but is often interrupted by shut-in periods.

Therefore, the initial temperature T0ðr�; z�; s0Þ at the

onset of the specified period s� ¼ s0 of fluid circulation

in a well should account for the history of the well ex-

ploitation. If circulation is continuous or the shut-in

periods are sufficiently long, the formation temperature

may be restored by the next stage of circulation. In this
Fig. 1. Schematic sketch of the borehole with multi-layer

casing.
case it can be assumed that the initial temperature is

approximately equal to the undisturbed temperature of

the formation, T0ðr�; z�; s0Þ ¼ Tf ðz�Þ. Since radial tem-

perature gradients are much greater than temperature

gradients in the vertical direction [10,11], the derivatives

with respect to axial coordinate z� in the governing

equations are assumed to be negligibly small.

2.1. Governing equations

In the case of composite m-layered media around

the borehole, with layers bounds determined by the

non-dimensional formulae, ri�1 6 r6 ri (i ¼ 1; 2; . . . ;m;
r0 ¼ 1), the temperature distribution in the surrounding

rock can be described in cylindrical coordinates ðr; zÞ by
the following non-dimensional mathematical model

oT
os

¼ DðrÞ
r

o

or
r
oT
or

� �
; 1 < r < 1; s > 0; ð1Þ

s ¼ 0; T ¼ 0; ð2Þ

r ¼ 1; � oT
or

¼ Bi½TLðz; sÞ � T �; ð3Þ

lim
r!1

T < 1; ð4Þ

T jr¼ri�0 ¼ T jr¼riþ0;

KðrÞ oT
or

����
r¼ri�0

¼ KðrÞ oT
or

����
r¼riþ0

ði ¼ 1; 2; . . . ;mÞ: ð5Þ

The non-dimensional quantities in (1)–(5) are introduced

by the relationships:

r ¼ r�=rw; z ¼ z�=H ;

Bi ¼ hwrw=k1; s ¼ s�d1=r2w;

T ¼ T �ðr�; z�; s�Þ � T0ðr�; z�; s� þ s0Þ;

TLðz; sÞ ¼ T �
L � T0

�
� 1

Bi
oT0
or

�����;
ð6Þ

where T0ðr�; z�; s� þ s0Þ satisfies Eq. (1) and continuity

conditions (5).

The coefficients DðrÞ and KðrÞ in Eqs. (1)–(5), which

characterize the differences in thermophysical properties

of the composite multi-layer media surrounding the

borehole, can be defined as

DðrÞ ¼

D1; 1 < r < r1;

D2; r1 < r < r2;

. . . . . .

Dm; rm�1 < r < 1;

8>>><
>>>:

KðrÞ ¼

K1; 1 < r < r1;

K2; r1 < r < r2;

. . . . . .

Km; rm�1 < r < 1;

8>>><
>>>:

ð7Þ
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where Di ¼ di=dm, Ki ¼ ki=k1, and di, ki are the thermal

diffusivity and thermal conductivity in the ith layer. For

this definition, Dm ¼ 1 and K1 ¼ 1. Eq. (1) describes the

temperature distribution in the media surrounding the

borehole, Eq. (2) is the initial condition at s ¼ 0, Eq. (3)

represents the Newton�s law of convective heat transfer

at the bore-face, Eq. (4) is the condition of the finite

temperature of the rock at infinity, and Eqs. (5) are the

continuity conditions at the boundaries of the layers

with different thermophysical properties, that constitute

the domain surrounding the borehole.

The above formulated mathematical model (1)–(5)

can be solved by Laplace transform. However, it will

lead to rather awkward formulae. To this end, in this

case it would be interesting to employ the approximate

integral-balance method [20] for obtaining a simple

solution convenient for further incorporation into a

complete model of the heat and mass transfer pro-

cesses during drilling, injection and production periods

of borehole exploitation. The analytical approximate

method based on integral-heat-balance correlations

proposed by Goodman [20] and improved by Volkov

et al. [21] is used in the present study for solution of the

heat conduction problem (1)–(5) in the composite multi-

layer domain. This method was successfully applied in

[22] to the problem of moving heat source within the

borehole in an application involving melting a paraffin

deposition in the annulus. The accuracy of the solution

found by integral-balance method is validated in the

present study by comparison to the exact analytical so-

lution available in [19] for a homogeneous domain with

uniform thermophysical properties.

2.2. Description of the generalized integral-balance

method

According to [21] the approximate solution of the

problem (1)–(5) is sought in the form

T ðr; sÞ ¼ TL þ
Pn

k¼1 akðsÞfkðrÞ; 16 r6 lðsÞ;
0; lðsÞ < r < 1;

�
ð8Þ

where the basis functions fk (for k ¼ 1; 2; 3; . . . n) con-

stitute a complete and linearly independent system for

every finite interval ½1; l� and satisfy the following rela-

tionships:

1

r
d

dr
r
dfk
dr

� �
¼ fk�1; f0 ¼ 0; ð9Þ

r ¼ 1; dfk=dr ¼ Bi � fk ; ð10Þ

fk jr¼ri�0 ¼ fk jr¼riþ0; KðrÞdfk=drjr¼ri�0 ¼KðrÞdfk=drjr¼riþ0;

ði¼ 1;2; . . . ;m; k¼ 1;2; . . .nÞ: ð11Þ

It is approximately assumed that function T and its

derivative oT=or for each specified moment of time
differs from zero only for r within the finite interval ½1; l�
and at r ¼ l the following conditions for r ¼ l are valid

T jr¼l ¼ oT=orjr¼l ¼ 0: ð12Þ

So in this sense the function lðsÞ can be referred to as a

radius of thermal influence.

Multiplying Eq. (1) by rfkðrÞ and integrating on the

interval ½1; l� while accounting for boundary conditions

(2)–(4), yields the recurrent system

dmk
ds

¼ mk�1 þ TLBifkðrÞjr¼1 ðm0 ¼ 0Þ ð13Þ

with initial conditions at s ¼ 0 of mk ¼ 0, where

mk ¼
Z lðsÞ

1

rfkðrÞT ðr; sÞdr: ð14Þ

Hence, from Eq. (13) mk can readily be obtained,

mk ¼ Bi
Xk

j¼1

fjð1Þ
Z s

0

� � �
Z s

0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
k�jþ1

TLðsÞds: ð15Þ

On the other hand, substituting (8) into (14), mk can

be presented in the following form

mk ¼ TLMk þ
Xn

j¼1

ajðsÞMjk; ð16Þ

where

MkðlÞ ¼
Z lðsÞ

1

rfkðrÞdr;

MjkðlÞ ¼
Z lðsÞ

1

rfjðrÞfkðrÞdr ðk; j ¼ 1; 2; . . .Þ:
ð17Þ

Combining formulae (15) and (16), and accounting for

boundary conditions (12), yields

Xn

j¼1

ajðsÞMjk ¼ �TLMk þ Bi
Xk

j¼1

fjð1Þ
Z s

0

� � �
Z s

0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
k�jþ1

TLðsÞds

ðk ¼ 1; . . . ; n� 1Þ; ð18Þ

Xn

k¼1

akðsÞfkðlÞ ¼ �TL;
Xn

k¼1

akðsÞf 0
kðlÞ ¼ 0: ð19Þ

In Eq. (19) and below the derivatives, dfk=dr, at r ¼ l
are denoted as f 0

kðlÞ ðk ¼ 1; . . . ; nÞ. The system of ðnþ 1Þ
Eqs. (18) and (19) is used for calculation of n unknown

coefficients akðsÞ ðk ¼ 1; 2; . . . ; nÞ and of function lðsÞ.
For the first approximation ðn ¼ 1Þ

a1 ¼ �TL=f1ðlÞ; ð20Þ

and, hence, (8) reduces to

T ðr; sÞ ¼ T1ðr; sÞ ¼ TL 1

�
� f1ðrÞ

f1ðlÞ

�
; 16 r6 lðsÞ: ð21Þ
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In this case ðn ¼ 1Þ the radius of thermal influence is

determined by the equation

M1 �
M11ðlÞ
f1ðlÞ

¼ Bif1ð1Þ
1

TL

Z s

0

TLðpÞdp: ð22Þ

Since, as can be readily shown, M11ðlÞ ¼ l½f1ðlÞf 0
2ðlÞ�

f 0
1ðlÞf2ðlÞ�, and M1ðlÞ ¼ lf 0

2ðlÞ � Bif2ð1Þ, Eq. (22), which
defines function lðsÞ, can be converted to

f2ðlÞ
f1ðlÞ

� Bif2ð1Þ ¼
1

TL

Z s

0

TLðpÞdp: ð23Þ

After a bit more tedious but rather straightforward

manipulations, the second approximation ðn ¼ 2Þ for

the temperature distribution in the rocks (8) can be

presented by the equation

T ðr; sÞ ¼ T2ðr; sÞ

¼ TL 1

�
� f1ðrÞf 0

2ðlÞ � f2ðrÞf 0
1ðlÞ

f1ðlÞf 0
2ðlÞ � f2ðlÞf 0

1ðlÞ

�
; 16 r6 lðsÞ;

ð24Þ

where l is defined by the equation

�Bif2ð1Þ þ
f1ðlÞf 0

3ðlÞ � f 0
1ðlÞf3ðlÞ

f1ðlÞf 0
2ðlÞ � f2ðlÞf 0

1ðlÞ
lKðlÞf 0

1ðlÞ

¼ 1

TL

Z s

0

TLðpÞdp: ð25Þ

Accounting for Eqs. (21) and (24), an equation for the

heat flux on the bore-face

qwðsÞ ¼ � 1

Bi
oT
or

����
r¼1

can be presented in the following form

qw ¼ TLðsÞ~qq; ð26Þ

where ~qq, obviously, represents the heat flux on the bore-

face if in the mathematical model (1)–(5) it is assumed

that TL is constant and equal to unity.

For the first approximation ðn ¼ 1Þ

~qqðsÞ ¼ ~qq1ðsÞ ¼
f 0
1ð1Þ

Bif1ðlÞ
: ð27Þ

For the second approximation ðn ¼ 2Þ

~qqðsÞ ¼ ~qq2ðsÞ ¼
f1ð1Þf 0

2ðlÞ � f2ð1Þf 0
1ðlÞ

Bi½f1ðlÞf 0
2ðlÞ � f2ðlÞf 0

1ðlÞ�
: ð28Þ

The basis functions, f1ðrÞ, f2ðrÞ and f3ðrÞ, that should be

substituted into Eqs. (21), (23)–(25), (27) and (28) are

defined by the recurrent relationships (9)–(11). Although

these functions can be obtained for the heat conduction

problem in the composite domain, which contains an

arbitrary finite number of layers, m ¼ 1; 2; 3, etc., with
different thermophysical properties at each layer, in

order to avoid bulky formulae, we will consider only the
practically important particular case when m is equal to

2. Further analysis of the effect of casing materials with

different physical properties on the heat transfer between

the rock formation and borehole will be performed on

the basis of this simplest model of composite media that

is composed of two homogeneous regions. In this case

ðm ¼ 2Þ the formulae for the first three basis functions,

f1, f2 and f3 are the following:

f1ðrÞ ¼
lnðrÞ þ 1=Bi; 16 r < r1;
1
K2

ln r
r1
þ a; r1 6 r < 1;

�
ð29Þ

f2ðrÞ ¼

r2

4D1
lnðrÞ � 1þ 1

Bi

� �
þ b1;

16 r < r1;
r2

4
1
K2

ln r
r1
þ a� 1

K2

h i
þ c1 ln

r
r1
þ c2;

r1 6 r < 1;

8>>>><
>>>>:

ð30Þ

f3ðrÞ ¼

r4

64D2
1

ln r � 3
2
þ 1

Bi

� 	
þ r2

4D1
b1 � b2;

16 r < r1;
r4

64
1
K2

ln r
r1
� 3

2K2
þ a


 �
þ r2

4
c1 ln r

r1
� 1


 �
þ c2

h i
þ d1 ln r

r1
þ d2;

r1 6 r < 1;

8>>>>>>>><
>>>>>>>>:

ð31Þ

where

a ¼ ln r þ 1

Bi
; b1 ¼

Bi2 � 2Biþ 2

4Bi2
;

b2 ¼
5Bi3 � 20Bi2 þ 40Bi� 32

128D2
1Bi3

;

c1 ¼
r21
4K2

2a
1

D1

��
� K2

�
� 1

D1

þ 1



;

c2 ¼
r21
4

a
1

D1

��
� 1

�
� 1

D1

þ 1

K2



þ b1;

d1 ¼
r41

64K2

4a
1

D2
1

��
� K2

�
þ 5 1

�
� 1

D2
1

�


þ r21
4K2

2b1

D1

�
þ K2ðc1 � 2c2Þ



;

d2 ¼
r41
64

a
1

D2
1

��
� 1

�
� 1:5

1

D2
1

�
� 1

K2

�


þ r21
4

b1

D1

�
þ ðc1 � c2Þ



þ b2:

As can be seen, the basis functions fi are simple but

rather awkward in the case of a composite domain.

2.3. Solution for the homogeneous domain (D ¼ K ¼ 1

and m ¼ 1)

If the media surrounding the borehole is homo-

geneous (i.e. D ¼ K ¼ 1, m ¼ 1), then in this particular

case, from (9)–(11) it follows that
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f1ðrÞ ¼ lnðrÞ þ 1=Bi; ð32Þ

f2ðrÞ ¼
r2

4
lnðrÞ

�
� 1þ 1

Bi



þ Bi2 � 2Biþ 2

4Bi2
; ð33Þ

f3ðrÞ ¼
r4

64
ln r

�
� 3

2
þ 1

Bi

�
þ r2

4

Bi2 � 2Biþ 2

4Bi2

� 5Bi3 � 20Bi2 þ 40Bi� 32

128Bi3
: ð34Þ

Substituting these functions into Eqs. (21)–(28), yields:
eTT ðr; sÞ ¼ 1� 2Bi
p

Z 1

0

fJ0ðprÞ½pY1ðpÞ þ BiY0ðpÞ� � Y0ðprÞ½pJ1ðpÞ þ BiJ0ðpÞ�g
pf½pJ1ðpÞ þ BiJ0ðpÞ�2 þ ½pY1ðpÞ þ BiY0ðpÞ�2g

e�p2s dp: ð40Þ
For the first approximation,

T ðr; sÞ ¼ TL
Bi lnðl=rÞ
1þ Bi ln l

; 16 r6 lðsÞ; ð35Þ

~qq1 ¼ 1=ð1þ Bi ln lÞ; ð36Þ

where lðsÞ is defined by Eq. (23).

For the second approximation,

T ðr;sÞ

¼ TL 1

�
� r2

4
lnr

��
þ 1

Bi
�1

�
þb1

� l2

2
lnl

�
þ 1

Bi
�1

2

�
lnr

�
þ 1

Bi

�

l2

4
lnl

���
þ 1

Bi
�1

�

þb1�
l2

2
lnl

�
þ 1

Bi
�1

2

�
lnl

�
þ 1

Bi

�
�
; 16r6lðsÞ;

ð37Þ

~qq2ðsÞ ¼
2�Bi
4Bi2 � l2

2Bi ln lþ 1
Bi� 1

2

� 	
l2
4

ln lþ 1
Bi� 1

� 	
þ b1 � l2

2
ln lþ 1

Bi� 1
2

� 	
ln lþ 1

Bi

� 	 ;
ð38Þ

where lðsÞ is defined by Eq. (25).

The above solutions for the homogeneous domain

are simple and, as it will be shown by comparison with

exact solutions, are accurate enough for assessing the

temperature field in the rocks and the heat flux on

the bore-face. Furthermore, the approximate solutions

found for n ¼ 1 and n ¼ 2 can be made more precise

by obtaining the next approximations, since the inte-

gral-balance method converges for n ! 1. Although

methodologically and technically this method does not

present any difficulties for obtaining the 3rd or 4th

approximations, doing so leads to a bit more bulky

equations that make algebraic evaluations rather te-

dious.
2.4. Exact analytical solution

If the domain is homogeneous ðm ¼ 1Þ and solution

of (1)–(4) for TL ¼ 1 is known (denoted by eTT ), then the

solution of the above problem for arbitrary TL can be

presented (due to the Duhamel theorem [19]) in the

following form:

T ¼ o

os

Z s

0

TLðz; pÞeTT ðr; s� pÞdp; ð39Þ

where according to [19],
In (40) J0 and J1 are Bessel functions of the first kind of

the order 0 and 1, respectively; and Y0 and Y1 are Bessel
functions of the second kind of the order 0 and 1, re-

spectively. Denoting the heat flux on the wall of the well

for temperature eTT as

~qqðsÞ ¼ � 1

Bi
oeTT
or

�����
r¼1

and differentiating Eq. (40), yields

~qqðsÞ ¼ 4Bi
p2

�
Z 1

0

e�p2sdp

f½pJ1ðpÞ þBiJ0ðpÞ�2 þ ½pY1ðpÞ þBiY0ðpÞ�2gp
:

ð41Þ

Combining (3), (39) and (41) and accounting for

~qqð0Þ ¼ 1, the non-dimensional temperature and heat flux

on the well�s wall for the general problem (1)–(4) (in

terms of temperature T ) can be readily computed:

T jr¼1 ¼ �
Z s

0

TLðz; pÞ
o

os
~qqðr; s� pÞdp; ð42Þ

qw ¼ � 1

Bi
oT
or

����
r¼1

¼ TLðz; sÞ þ
Z s

0

TLðz; pÞ
o

os
~qqðs� pÞdp: ð43Þ

Eqs. (41)–(43) provide fundamentals for conjugating the

temperature field in the rock formation with the heat

and mass transfer processes in the borehole. These

equations are rather awkward and can present certain

difficulties for the numerical computations, especially

when coupled with equations for heat and mass trans-

port in the well. In this sense, the simpler approximate

solutions obtained above look much more attractive.
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2.5. Simple approximate formula for the heat flux on the

bore-face

It is worthwhile mentioning that function lðsÞ in the

integral-heat-balance method is defined implicitly by the
~qqðsÞ �

1=f1þ Bi ln½1þ AðBiÞ
ffiffiffi
s

p
�g; 06 s < s1;

1=f1þ Bi lnðr1Þ þ Bi ln½ð1þ AðBiÞ
ffiffiffi
s

p
Þ=r1�=K2g; s1 6 s < s2;

. . . . . .
1= 1þ Bi

Pm�1

j¼1
1
Kj

ln
rj
rj�1


 �
þ Bi ln½ð1þ AðBiÞ

ffiffiffi
s

p
Þ=rm�1�=Km

n o
; sm�1 6 s < 1;

8>><
>>: ð48Þ

Bi=0.5

Bi=1

Bi=4

Bi=10

q~

τ

Fig. 2. Variation of the bore-face heat flux ~qq for different Bi.
Solid line represents the exact solution (41), dotted line––first

approximation (29), (33), and dashed line––second approxi-

mation (31), (34).
non-linear algebraic equations (23) and (25) and,

therefore, can only be found numerically. Instead of

correcting the derived solutions by finding the next ap-

proximations (leading to more complex equations), it

would be interesting to use the obtained above ap-

proximate formulae for further simplification of the

solution without loss of accuracy. For this purpose we

approximately assume that

lðsÞ � 1þ AðBiÞ
ffiffiffi
s

p
; ð44Þ

which correctly (due to Eqs. (23) and (25)) simulates the

asymptotic behavior of lðsÞ for s ! 1 and satisfies the

initial condition at s ¼ 0, lð0Þ ¼ 1. Then on the basis of

Eq. (36) it can be suggested that roughly

~qqðsÞ � 1=f1þ Bi ln½1þ AðBiÞ
ffiffiffi
s

p
�g; ð45Þ

where A is an unknown parameter that can be obtained

numerically by comparison of the proposed formula (45)

with the exact solution (41). Minimizing the squared re-

sidual between these two solutions for different Bi, the
variation of A with respect to parameter Bi can be readily

determined. Suggesting that the approximation for the

function A ¼ AðBiÞ is in the form of a ratio of linear

functions of Bi, the following equation is obtained:

AðBiÞ ¼ ð2:084þ 0:704BiÞ
ð1:554þ 0:407BiÞ : ð46Þ

The numerical values for the coefficients in (46) are

found by the non-linear regression method where the

estimates of the parameters are chosen to minimize the

merit function given by the sum of squared residuals.

On the basis of the above formulae, accounting for

the structure of Eq. (29), a similar approximate formula

for the multi-layer domain can be suggested. For in-

stance, in the case of two regions with different ther-

mophysical properties ðm ¼ 2Þ this formula can be

presented as:

~qqðsÞ �
1=f1þ Bi ln½1þ AðBiÞ

ffiffiffi
s

p
�g;

06 s < s1;
1=f1þ Bi lnðr1Þ þ Bi ln½ð1þ AðBiÞ

ffiffiffi
s

p
Þ=r1�=K2g;

s1 6 s < 1;

8>><
>>:

ð47Þ
where s1 is obtained from the equation 1þ AðBiÞ ffiffiffiffi
s1

p ¼
r1 and A is defined by Eq. (46).

Apparently, formula (47) can be readily extended for

an arbitrary number of layers m:
where m ¼ 1; 2; 3, etc., and r0 ¼ 1.
3. Numerical results and discussion

Fig. 2 illustrates the convergence of the approximate

integral-balance method. Computations are made for

the solution for a homogeneous domain with uniform

thermophysical properties. Both approximate solutions

(first ðn ¼ 1Þ and second ðn ¼ 2Þ approximations), rep-

resented by the dotted and dashed curves in Fig. 2, are in

good agreement with the exact solution (41) (solid

curves), though the second approximation exhibits bet-

ter performance for all values of s and Bi. For relatively
high Biot numbers (enhanced heat transfer and higher

fluid flow rates in a borehole) all plots practically merge

into one. With reduction of the Biot numbers the dis-

crepancy between the exact and approximate solutions

increases. Obtaining the next approximations in terms

of the integral-balance method can easily reduce the

discrepancy, though doing so leads to more bulky so-

lutions. In general, the accuracy of the second approxi-

mation is quite sufficient and, hence, it definitely can be

used for calculation of the heat flux on the bore-face and



Bi1

Bi2

q~

τ

Fig. 3. Heat flux on the bore-face for different casing materials

(data from Table 1). (1) Dotted line––steel; (2) Dashed line––

polyethylene; (2) Dot-dash line––cemented layer; (4) Solid

line––no casing.
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of the temperature in the rock formation even for low

intensity heat transfer between the fluid and formation.

A series of computations was conducted in order to

estimate the effect of borehole cementation and casing

on the heat flow rate through the bore-face for different

flow regimes and casing materials. The thermophysical

properties of the casing materials selected for the com-

putations are the following: rw ¼ 0:072 m, r�1 ¼ 0:082 m,

d1 ¼ 15� 10�6 m2/s, k1 ¼ 46 W/mK––steel casing; rw ¼
0:072 m, r�1 ¼ 0:082 m, d1 ¼ 0:089� 10�6 m2/s, k1 ¼
0:115 W/mK––polyethylene casing; and rw ¼ 0:072 m,

r�1 ¼ 0:142 m, d1 ¼ 0:46� 10�6 m2/s, k1 ¼ 1:2 W/mK––

for the casing layer of the cement on the walls of the

borehole. The heat transfer coefficients for the solid–

liquid interface depend on the flow rate and are taken as:

hw ¼ h1 ¼ 11 W/m2 K and hw ¼ h2 ¼ 110 W/m2 K in the

numerical computations. For the rocks that constitute

the formation, k2 ¼ 2:3 W/mK and d2 ¼ 1:2� 10�6 m2/

s. According to the definition (7), in all cases

K1 ¼ D2 ¼ 1. The numerical values of the non-dimen-

sional parameters, which correspond to the above data,

are collected in Table 1. The results of the computations

for the parameters from the Table 1, presented in Fig. 3,

indicate that the thermophysical properties of the casing

materials may strongly affect the heat transfer between

the flow in the borehole and the surrounding media. The

higher values of heat flux correspond to materials with

higher thermal conductivity, whereas materials with

good insulating properties (like polyethylene) strongly

reduce the heat flux on the bore-face. This effect is less

pronounced for the higher Biot numbers (higher fluid

flow rates in the borehole). The difference between the

results for the highly thermally conductive thin casing

(steel tubes) and the borehole without casing is relatively

small and does not even exceed several percent of the

total heat flux. Hence, in this case instead of solving the

non-steady heat conduction problem for a multi-layer

environment, it is admissible to use the corrected value

of the Biot number that accounts for the thermal resis-

tance of the steel casing. Namely, for this approxima-

tion, which is widely used in engineering literature [17],

the modified Biot number is given by Bitot ¼ Bi=
ð1þ hwdc=kcÞ, where dc and kc are the thickness and

thermal conductivity of the casing, respectively. It is

worthwhile mentioning that this formula should be used

with caution. For instance, it cannot be used at the

highly unsteady stage of the process at the onset of
Table 1

Non-dimensional parameters for different casing materials

Type of casing r1 K2

1. Steel tube 1.2 0.05

2. Polyethylene tube 1.2 20

3. Cemented layer 2 1.92

4. No casing 1 K1 ¼ K2 ¼
circulation or for materials of low thermal conductivity.

For the latter case, the solution of the unsteady heat

conduction problem found in this study for multi-layer

arrangements (1)–(5) should be used for the heat transfer

analysis.

As it was mentioned above, one of the disadvantages

of the generalized integral-balance method is that the

radius of thermal influence lðsÞ can only be obtained

numerically by solving Eq. (23) or (25). In order to avoid

this complication, the approximate explicit solution

(44)–(46) is proposed. Numerical calculations that vali-

date this solution are illustrated in Figs. 4 and 5 where

the solid lines correspond to the exact solution for the

heat flux on the bore-face (41), the dashed lines to the

approximate solution (44)–(46), and the dotted lines to

the approximate solutions obtained by the integral-

balance method (Eqs. (38) and (25)––second approxi-

mation). As can be seen, for all parameters Bi and all

times s the exact solution (solid curves) practically co-

incides with the data that correspond to the proposed

approximate formula (45) (dashed curves in Figs. 3 and

4). The latter justifies the accuracy of the proposed

simple solution and proves its applicability to the as-

sessment of the thermal interaction between the bore-

hole and the formation for processes where the thermal

history of the formation and borehole axial temperature

variation cannot be ignored. For instance, due to Eqs.

(6), (35), (36), (44) and (46), if the initial temperature of

the formation and of the circulating fluid are known, the
D1 Bi1 Bi2

12.5 0.018 0.18

0.075 7 70

0.38 0.67 6.7

1 D1 ¼ D2 ¼ 1 0.35 3.5



q~

τ

Bi1

Bi2

1

2

Fig. 6. Heat flux on the bore-face computed with approximate

close-form solution (47) (dotted lines) and integral-balance

method (Eqs. (25) and (38)) for cement and polyethylene casing

materials (data from Table 1). (1) Dashed line––polyethylene

casing; (2) Dot-dash line––cemented layer.

τ

Bi =0.5

Bi =1

Bi =4

Bi =10

q~

Fig. 4. Short-term ð0 < Fo < 2Þ variation of the bore-face heat

flux ~qq for different Bi. Solid line represents the exact solution

(41), dotted line––approximate solution (29), (33), and dashed

line––proposed solution (35), (36).

q

τ

~
Bi =0.5

Bi =1

Bi =4
Bi =10

Fig. 5. Long-term ð0 < Fo < 20Þ variation of the bore-face heat

flux ~qq for different Bi. Solid line represents the exact solution

(41), dotted line––approximate solution (29), (33), and dashed

line––proposed solution (35), (36).
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actual temperature field in the formation T � and heat

flux on the bore-face q� can be approximated with the

following equations

T � ¼ T0ðr; z; sþ s0Þ þ T �
L ðz; sÞ

�
� T0

�
� 1

Bi
oT0
or

�����
r¼1




� Bi ln½ð1þ AðBiÞ
ffiffiffi
s

p
Þ=r�

1þ Bi ln½1þ AðBiÞ
ffiffiffi
s

p
� ; ð49Þ

q�w ¼ �k1
oT �

or

� �����
r¼1

¼ �k1
oT0
or

� �����
r¼1

þ
k1Bi T �

L ðz; sÞ � T0 � 1
Bi

oT0
or

� 	��
r¼1

h i
1þ Bi ln½1þ AðBiÞ

ffiffiffi
s

p
� ; ð50Þ

where A is defined by Eq. (46).

In the case of composite (multi-layer) media, pro-

vided that the exact close-form solution is not available,

the proposed simplified solution (47) can be validated by

comparison to the solution obtained by the integral-

balance method, which is defined to the second ap-

proximation by Eqs. (25), (28)–(31). It is rewarding to
see in Fig. 6 that results of numerical computations

based on these formulae (dashed and dot-dash lines)

show a striking consistency with the approximate solu-

tion (47) (dotted lines) for all Bi and s, for both poly-

ethylene and for cement casings. This astonishing

performance of the proposed formula (47) for the par-

ticular case of m ¼ 2 allows us to also expect that for the

general case of an arbitrary number of layers, consti-

tuting the media surrounding the borehole, Eq. (48) can

be used for computing the heat flow rate at the bore-face

with reliable accuracy.
4. Conclusions

The following conclusions are drawn:

1. The generalized integral-heat-balance method can be

applied to the heat conduction in the multi-layer

media surrounding the borehole.

2. The second approximation of the integral-balance

method is accurate enough to replace the exact ana-

lytical solution found by Laplace transform.

3. The simplified close-form approximate solution for

the heat flow rate on the bore-face is proposed. Its ac-

curacy is validated for the homogeneous domain by

comparison to the exact solution and for the compos-

ite (multi-layer) media by comparison to the solution

obtained by the generalized integral-heat-balance

method.
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